Screening for Breast Cancer
Screening

- Why is screening required? Does it make a difference?
- What is screening for?
- Morbidity from screening
- Who should be screened? When should it be done?
Why is screening required? Does it make a difference?

- **Effective screening saves lives**
 - Multiple studies show 30% decrease in breast cancer deaths with screening

<table>
<thead>
<tr>
<th>Study</th>
<th>Period</th>
<th>Decrease in Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Insurance Plan of New York</td>
<td>1963 – 1966</td>
<td>25%</td>
</tr>
<tr>
<td>Malmö Mammographic Screening Trial</td>
<td>1988</td>
<td>36%</td>
</tr>
<tr>
<td>Gothenburg Breast Cancer Screening Trial</td>
<td>1997</td>
<td>45%</td>
</tr>
</tbody>
</table>
What is screening for?

• **Early detection of cancer**
 – Early detection usually translates to detecting smaller, and hence earlier cancer

• **Early cancer = better prognosis and survival**
 – Early cancer also associated with decreased rates of recurrence (cancer returning) and metastasis (cancer spread)
Could screening be bad for you?

• Can screening result in unnecessary biopsies?
 – Indeterminate (2%), Suspicious (30%), Malignant (>90%)

• Anxiety

• Overdiagnosis
 – Definition: finding a cancer that would not become relevant
 • For every 11 cancers detected, 2 lives saved, 1 would be overdiagnosed

• Can too much radiation cause cancer?
 – Average Mammogram – 7mGy, 20MMG = 140 mGy
 • Average treatment dose: 55 kGy
 – (1Gy = 1000mGy, 1000Gy = 1kGy)
 • No one has developed cancer because of screening
 – Bijwaard, H. Radiation Research, 2010 Jun (PMID 20726723)

Could screening be bad for you?

- **Radiation exposure**
 - Ave mammogram: 2 mGy per exposure.
 - 30% less for digital mammograms
- **For every 100,000 women undergoing MMG, 1 extra cancer can be expected from radiation exposure**
 - For every breast cancer caused by radiation, MMG detect 300 breast cancers
- **Radiation-induced breast cancer decreases with age**
 - 10-19 yrs: 2.95% / Gy
 - 20-29 yrs: 0.52% / Gy
 - 30-39 yrs: 0.43% / Gy
 - 40-49 yrs: 0.20% / Gy
 - 50-59 yrs: 0.06% / Gy
 - 60-69 yrs: 0.00% / Gy
Who should be screened? When should it be done?

- **Age 20-29**
 - Regular breast self examination (BSE) every month
 - Physician examination every 2-3 yrs

- **Age 30-39**
 - Monthly BSE, Annual examination by doctor
 - High risk of breast cancer – start mammograms

- **Age 40 and above**
 - 40 to 50: Annual Mammogram, and clinical examination with doctor
 - >50 – 65: Mammogram every 2 years, annual check with a doctor
At-risk populations to target

- Diabetes
- Obese
- Alcohol intake
- Nulliparous
- Late age at first pregnancy
- Patients on HRT, OCP

- Patients That Should be Followed by Breast Surgeon
 - Previous malignancy
 - Previous diagnosis of ADH, ALH, LCIS
 - Strong family history
Screening Modalities

- **Digital mammography**
 - Only technique with proven efficacy in detecting breast cancer
 - Complements physical examination
 - Mammographic detected lesions usually <1.5cm
Screening Modalities

- **Ultrasound scans**
 - Very good at distinguishing cystic from solid masses
 - ADJUNCT to mammograms &/or physical examination
 - Not recommended as a standalone screening method
 - Lower sensitivity than MMG for cancer detection

 - High risk FHx or personal risk for cancer
 - High mammographic density
 - Better in denser breasts cf fatty breasts
Screening Modalities

• MRI
 – More sensitive than MMG and US combined
 – But LESS specific
 • More false positives
 – Adv: MRI-only detected cancers usually small, node negative
 – When used together with MMG, no need for US
 – Recommended ONLY for screening of women at high risk of breast cancer
Screening Modalities

• **Elastography**
 – Assess the elasticity of the lump
 • Adjunct to regular tools
 • Not to be used as a stand-alone screening tool

• **Tomosynthesis**
 – Allows viewing of Mammogram in 3D, better detection of lumps
 • Not to be used as a stand-alone screening tool
Screening Modalities

- Tumour markers
- CA 15-3, 125, 19-9
- NOT a screening tool
- Only useful in diagnosed cases
Surgery for Breast Cancer
What’s in, What’s new

• Surgical treatment
• Different choices
• Consequences of surgery
• New techniques
Surgical Treatment

• **Aim of surgery**
 – Remove all cancer from breast and lymph nodes
 • Margins are crucial

• **Timing for surgery**
 – Usually the first line of treatment
 • In a small group of patients, there is greater benefit if surgery is performed after chemotherapy

• **Secondary aim**
 – Oncoplastic techniques
 – Improved aesthetic outcomes
 – Retain natural form
Surgical Choices

- **Complete removal of the breast**
 - Required if cancer is large
 - Reconstruction of the breast is always an option

- **Conservation of the breast**
 - Radiotherapy is necessary after conservation

- **Lymph node assessment**
 - Axillary dissection
 - Important for deciding on additional treatment
 - Runs a low risk of lymphedema
Oncoplastic Surgery

Resection of cancer according to oncological principles, and re-modelling of the remaining breast to maintain normal form and contour / shape

- Breast is usually smaller
- May require downsizing of the other side

Figure 5 Volume displacement. Round block approach to reconstruct peripheral defect.

Sentinel Lymph Node Biopsy

Suitable for some patients

- Allows patients to avoid axillary surgery and complications
Factors predictive for residual axillary disease

- **Size of LN met : ITC vs. micromet vs. macromet**
 - Micromets (0.2-2mm): risk of other positive nodes 13-24%
 - Macromets (>2mm): risk of other positive nodes 45-79%

- **Tumour size**

- **Presence of LVI**
Table 2. Frequency of Positive Sentinel Lymph Nodes (SLNs) and Nonsentinel Nodes (NSNs) by Tumor Stage

<table>
<thead>
<tr>
<th>Tumor Stage</th>
<th>Patients, No.</th>
<th>Positive SLNs, No. (%)</th>
<th>Positive NSNs, No. (%)</th>
<th>≥4 Positive Axillary Nodes, No. (%)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1a</td>
<td>89</td>
<td>7 (8)</td>
<td>1/7 (14)</td>
<td>1/7 (14)</td>
</tr>
<tr>
<td>T1b</td>
<td>268</td>
<td>41 (15)</td>
<td>9/41 (22)</td>
<td>3/41 (7)</td>
</tr>
<tr>
<td>T1c</td>
<td>537</td>
<td>147 (27)</td>
<td>44/147 (30)</td>
<td>26/147 (18)</td>
</tr>
<tr>
<td>T2</td>
<td>343</td>
<td>171 (50)</td>
<td>77/171 (45)</td>
<td>52/171 (30)</td>
</tr>
<tr>
<td>T3</td>
<td>31</td>
<td>23 (74)</td>
<td>13/23 (57)</td>
<td>10/23 (43)</td>
</tr>
<tr>
<td>Total</td>
<td>1268</td>
<td>389 (31)</td>
<td>144/389 (37)</td>
<td>92/389 (24)</td>
</tr>
</tbody>
</table>
Distribution of mets according to size of SLN mets

<table>
<thead>
<tr>
<th>Sentinel Lymph Node Metastases</th>
<th>Sentinel Lymph Node Metastasis Size</th>
<th>No. of Cases</th>
<th>Additional Axillary Node Status</th>
<th>Additional Axillary Node Involvement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>All metastases</td>
<td>Any size</td>
<td>1228</td>
<td>744</td>
<td>484</td>
</tr>
<tr>
<td>ITC</td>
<td><0.2 mm</td>
<td>116</td>
<td>99</td>
<td>17</td>
</tr>
<tr>
<td>Micrometastases</td>
<td>≤2 mm</td>
<td>318</td>
<td>250</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>≤1 mm</td>
<td>212</td>
<td>176</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>>1 mm</td>
<td>106</td>
<td>74</td>
<td>32</td>
</tr>
<tr>
<td>Macrometastases</td>
<td>>2 mm</td>
<td>794</td>
<td>395</td>
<td>399</td>
</tr>
</tbody>
</table>

ITC indicates isolated tumor cells.

Annals of Surgery • Volume 241, Number 2, February 2005
Mets in Non SLN according to primary tumour size

<table>
<thead>
<tr>
<th>Author</th>
<th>T1a (≤.5 cm)</th>
<th>T1b (6–1.0 cm)</th>
<th>T1c (1.1–2.0 cm)</th>
<th>T2 (2.1–5.0 cm)</th>
<th>T3 (>5.0 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen⁹</td>
<td>0%</td>
<td>13%</td>
<td>29%</td>
<td>38%</td>
<td>71%</td>
</tr>
<tr>
<td>Reynolds²¹</td>
<td>[25% for T1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turner²²</td>
<td>17%</td>
<td>20%</td>
<td>46%</td>
<td>48%</td>
<td>73%</td>
</tr>
<tr>
<td>Kamath¹⁰</td>
<td>25%</td>
<td>30%</td>
<td>40%</td>
<td>46%</td>
<td>80%</td>
</tr>
<tr>
<td>Rahusen²⁴</td>
<td>50%</td>
<td>50%</td>
<td>49%</td>
<td>50%</td>
<td>—</td>
</tr>
<tr>
<td>Weiser²⁶</td>
<td>8%</td>
<td>21%</td>
<td>37%</td>
<td>48%</td>
<td>—</td>
</tr>
<tr>
<td>Wong²⁷</td>
<td>14%</td>
<td>22%</td>
<td>30%</td>
<td>45%</td>
<td>57%</td>
</tr>
<tr>
<td>Viale²⁸</td>
<td>100%</td>
<td>14%</td>
<td>25%</td>
<td>24%</td>
<td>—</td>
</tr>
<tr>
<td>Sachdev²⁹</td>
<td>[13% for T1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mignotte³⁰</td>
<td>[14%]</td>
<td></td>
<td></td>
<td>54%</td>
<td>52%</td>
</tr>
</tbody>
</table>

SLN, sentinel lymph node.

Incidence of non SLN mets after IHC detection of SLN mets

TABLE 5. Studies reporting incidence of non-SLN metastases in patients with IHC-detected SLN metastases

<table>
<thead>
<tr>
<th>Author</th>
<th>Proportion</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teng(^{22})</td>
<td>3/26</td>
<td>12</td>
</tr>
<tr>
<td>Kamath(^{10})</td>
<td>2/26</td>
<td>8</td>
</tr>
<tr>
<td>Wong(^{27})</td>
<td>3/28</td>
<td>11</td>
</tr>
<tr>
<td>Mignotte(^{30})</td>
<td>7/44</td>
<td>16</td>
</tr>
<tr>
<td>Jakub(^{31})</td>
<td>9/62</td>
<td>15</td>
</tr>
</tbody>
</table>

SLN, sentinel lymph node; IHC, immunohistochemistry.

Incidence of non SLN mets in presence of LVI

TABLE 3. Studies reporting incidence of non-SLN metastases in axillae with positive SLN(s), by presence of LVI in primary tumor

<table>
<thead>
<tr>
<th>Author</th>
<th>No LVI</th>
<th>LVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds21</td>
<td>43%</td>
<td>62%</td>
</tr>
<tr>
<td>Turner25</td>
<td>37%</td>
<td>65%</td>
</tr>
<tr>
<td>Abdessalem23</td>
<td>31%</td>
<td>62%</td>
</tr>
<tr>
<td>Rahusen24</td>
<td>42%</td>
<td>30%</td>
</tr>
<tr>
<td>Weiser26</td>
<td>26%</td>
<td>41%</td>
</tr>
<tr>
<td>Viale28</td>
<td>21%</td>
<td>26%</td>
</tr>
<tr>
<td>Sachdev29</td>
<td>12%</td>
<td>32%</td>
</tr>
</tbody>
</table>

LVI, lymphovascular invasion; SLN, sentinel lymph node.
Recurrence rates

- 20,000 patients observed after excision of positive LN
 - Micromets: RR 0.4%
 - Macromets: RR 1.0%

- J Clin Oncol
ASCOG Z0011

• No age restrictions (25-92)
• T1, T2 (median 1.7cm/1.6cm)
• Wide local excision only
 • Clear margins – no tumour at inked surface
• SNB positive
 • Identified using FS / touch print / H&E (IHC detected mets were excluded)
 • Fewer than 3 positive nodes / matted nodes / ENE
• Randomized to observation or ALND
 • ALND = level I & II, 10 LN
• All receive WBRT
• Systemic therapy according to MTC
Results

FU: 6.3 yrs median (5.2-7.7)
94 deaths (SLND: 42, ALND: 52)
5YSR SLND: 92.5%, ALND: 91.8%
5YDFS SLND: 83.9%, ALND 82.2%
SLND group had significantly less morbidity (25% vs 70%)
Axillary nodal recurrence rate
- SLND – 2.5% at 5 yrs
- ALND – 3.6% at 5 yrs
Aims of ALND

- Locoregional control
- Prognostic staging
 - Need for adjuvant therapy
- NO survival benefit
SNB

• **Not indicated for**
 – T3, T4 disease (LABC)
 – Inflammatory breast cancer
 – DCIS in BCS
 • Except in large DCIS, >5cm
 • Palpable DCIS
 • microinvasion
 – Pregnancy
 – Previous extensive breast / axillary surgery
 – Presence of suspicious clinical LN
Neoadjuvant Chemotherapy for Breast Cancer
Chemotherapy

• Standard regime:
 • 5FU, Anthracycline (Doxorubicin), Cyclophosphamide

• Now more are using:
 • ACT: Anthracycline, Cyclophosphamide, Taxane
 • Or AT
 • With or without Herceptin
Neoadjuvant chemotherapy

• **Rationale:**
 – Downsize locally advanced breast cancers where margins are doubtful
 – Discovered that a proportion were able to have breast conserving surgery
 – Indications now include patients with cancers that are borderline conservable, to facilitate ease of conservation
NSABP-18

- Compared survival benefits of neoadjuvant chemotherapy vs adjuvant chemotherapy
- Patient population: T 1-3, N0-1, M0
- Randomized to 4 #s of neoadjuvant or adjuvant doxorubicin + cyclophosphamide
- At 16 yrs FU, no treatment difference in OS, DFS or Event Free Survival (EFS)
- But in neoadjuvant group
 - More patients had pathologically negative LN (58% vs 42%, p<0.0001)
 - Patients had higher conservation rates (68% vs 60%)
 - Women with pathological complete response, RFS 85.7%;
 - Residual pathologic invasive disease RFS 76.9%
 - Clinical partial response RFS 68.1%
 - Clinically no response RFS 63.9%
Neoadjuvant chemotherapy

- **Response rates**
 - 90% of patients will respond to chemotherapy
 - 5-10% will have complete pathological response
 - If patients are ER negative, grade 3, Her 2 positive (most chemosensitive gp), pCR rates could be 25-30%
 - Triple negative cancers have highest pCR rates (up to 40%)
 - 20-30% will have sufficiently good enough response to allow breast conservation
 - 30-40% will have a partial response, but not enough for conservation
 - 10% will have progressive disease
Neoadjuvant chemotherapy

- **Advantages**
 - Enables direct observation of chemotherapy response
 - Opportunity for breast conservation
 - Good model in which to test new chemotherapeutic agents
 - Patients with pCR response have better prognosis.

 - Emerging group of patients that may benefit from neoadjuvant chemo are those with high nodal burden of disease.
 - If have very good response with downstaging of axillary disease, have better survival.

Alternative avenues

• **Neoadjuvant endocrine therapy**

• **Targeted therapy**
 – Anti-angiogenic factors, Bevacizumab
 – Herceptin
Thank you for your attention